Wire meshes are
discontinuous structures which are composed by a connection of distinct wire
elements with a specific regular pattern (e.g. diamond, hexagonal, etc..).
They are worldwide used as protective structures in hazardous sloping regions and mining areas, however, their mechanical behaviour still be poorly understood. Wire meshes have different applications ranging from very dynamic phenomena such as debris flows and rockfall (rockfall fences) to quasi-static conditions as, for instance, slope stabilization (cortical meshes) and river erosion (gabions).
DEM modelling of meshes
The discrete element method (DEM) is here applied to get an insight into the mechanical behaviour of such structures. The mesh is simulated as an ensemble of spheres connected by remote interactions or as a connection of cylindrical elements .
The numerical model has been validated on experimental tests and extended to simplified in-situ applications. Varying the geometry of the retaining system (fixities, dimension, inclination), the retained material (type, grains size, constitutive model at the contact) and the mesh type several numerical simulations were carried out in order to enhance the comprehension of the in-field mechanical response of wire mesh systems.